Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A__ZWADR(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(app(X1, X2)) → A__APP(mark(X1), mark(X2))
MARK(prefix(X)) → MARK(X)
MARK(zWadr(X1, X2)) → MARK(X1)
A__APP(nil, YS) → MARK(YS)
MARK(zWadr(X1, X2)) → MARK(X2)
A__ZWADR(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__ZWADR(cons(X, XS), cons(Y, YS)) → A__APP(mark(Y), cons(mark(X), nil))
MARK(app(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(prefix(X)) → A__PREFIX(mark(X))
MARK(zWadr(X1, X2)) → A__ZWADR(mark(X1), mark(X2))
MARK(from(X)) → MARK(X)
A__APP(cons(X, XS), YS) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
MARK(app(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

A__ZWADR(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(app(X1, X2)) → A__APP(mark(X1), mark(X2))
MARK(prefix(X)) → MARK(X)
MARK(zWadr(X1, X2)) → MARK(X1)
A__APP(nil, YS) → MARK(YS)
MARK(zWadr(X1, X2)) → MARK(X2)
A__ZWADR(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__ZWADR(cons(X, XS), cons(Y, YS)) → A__APP(mark(Y), cons(mark(X), nil))
MARK(app(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(prefix(X)) → A__PREFIX(mark(X))
MARK(zWadr(X1, X2)) → A__ZWADR(mark(X1), mark(X2))
MARK(from(X)) → MARK(X)
A__APP(cons(X, XS), YS) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
MARK(app(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

A__ZWADR(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(app(X1, X2)) → A__APP(mark(X1), mark(X2))
MARK(zWadr(X1, X2)) → MARK(X1)
MARK(prefix(X)) → MARK(X)
A__APP(nil, YS) → MARK(YS)
MARK(zWadr(X1, X2)) → MARK(X2)
A__ZWADR(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__ZWADR(cons(X, XS), cons(Y, YS)) → A__APP(mark(Y), cons(mark(X), nil))
MARK(app(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(prefix(X)) → A__PREFIX(mark(X))
MARK(zWadr(X1, X2)) → A__ZWADR(mark(X1), mark(X2))
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
A__APP(cons(X, XS), YS) → MARK(X)
A__FROM(X) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(app(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP
              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

A__ZWADR(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(app(X1, X2)) → A__APP(mark(X1), mark(X2))
MARK(zWadr(X1, X2)) → MARK(X1)
MARK(prefix(X)) → MARK(X)
A__APP(nil, YS) → MARK(YS)
MARK(zWadr(X1, X2)) → MARK(X2)
A__ZWADR(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__ZWADR(cons(X, XS), cons(Y, YS)) → A__APP(mark(Y), cons(mark(X), nil))
MARK(app(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(zWadr(X1, X2)) → A__ZWADR(mark(X1), mark(X2))
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
A__APP(cons(X, XS), YS) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
MARK(app(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


A__ZWADR(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(app(X1, X2)) → A__APP(mark(X1), mark(X2))
MARK(zWadr(X1, X2)) → MARK(X1)
A__APP(nil, YS) → MARK(YS)
MARK(zWadr(X1, X2)) → MARK(X2)
A__ZWADR(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__ZWADR(cons(X, XS), cons(Y, YS)) → A__APP(mark(Y), cons(mark(X), nil))
MARK(app(X1, X2)) → MARK(X1)
MARK(zWadr(X1, X2)) → A__ZWADR(mark(X1), mark(X2))
A__APP(cons(X, XS), YS) → MARK(X)
MARK(app(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.

MARK(prefix(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
Used ordering: Combined order from the following AFS and order.
A__ZWADR(x1, x2)  =  A__ZWADR(x1, x2)
cons(x1, x2)  =  x1
MARK(x1)  =  x1
app(x1, x2)  =  app(x1, x2)
A__APP(x1, x2)  =  A__APP(x1, x2)
mark(x1)  =  x1
zWadr(x1, x2)  =  zWadr(x1, x2)
prefix(x1)  =  x1
nil  =  nil
s(x1)  =  x1
from(x1)  =  x1
A__FROM(x1)  =  x1
a__prefix(x1)  =  x1
a__zWadr(x1, x2)  =  a__zWadr(x1, x2)
a__app(x1, x2)  =  a__app(x1, x2)
a__from(x1)  =  x1

Lexicographic path order with status [19].
Quasi-Precedence:
[zWadr2, azWadr2] > AZWADR2 > AAPP2 > nil
[zWadr2, azWadr2] > [app2, aapp2] > AAPP2 > nil

Status:
aapp2: [1,2]
azWadr2: [2,1]
app2: [1,2]
AAPP2: [2,1]
AZWADR2: [1,2]
nil: multiset
zWadr2: [2,1]


The following usable rules [14] were oriented:

a__prefix(X) → prefix(X)
mark(s(X)) → s(mark(X))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
a__zWadr(X1, X2) → zWadr(X1, X2)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__from(X) → cons(mark(X), from(s(X)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
a__app(nil, YS) → mark(YS)
mark(nil) → nil
a__from(X) → from(X)
a__zWadr(nil, YS) → nil
mark(from(X)) → a__from(mark(X))
mark(prefix(X)) → a__prefix(mark(X))
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__app(X1, X2) → app(X1, X2)
a__zWadr(XS, nil) → nil
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
QDP
                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(prefix(X)) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(prefix(X)) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
s(x1)  =  s(x1)
prefix(x1)  =  x1
from(x1)  =  x1
A__FROM(x1)  =  A__FROM(x1)
mark(x1)  =  x1
cons(x1, x2)  =  x1
a__prefix(x1)  =  x1
nil  =  nil
zWadr(x1, x2)  =  zWadr(x1, x2)
a__zWadr(x1, x2)  =  a__zWadr(x1, x2)
a__app(x1, x2)  =  a__app(x1, x2)
app(x1, x2)  =  app(x1, x2)
a__from(x1)  =  x1

Lexicographic path order with status [19].
Quasi-Precedence:
[MARK1, s1, AFROM1] > [nil, aapp2, app2]
[zWadr2, azWadr2] > [nil, aapp2, app2]

Status:
aapp2: [2,1]
azWadr2: [2,1]
app2: [2,1]
MARK1: [1]
AFROM1: [1]
s1: [1]
zWadr2: [2,1]
nil: multiset


The following usable rules [14] were oriented:

a__prefix(X) → prefix(X)
mark(s(X)) → s(mark(X))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
a__zWadr(X1, X2) → zWadr(X1, X2)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__from(X) → cons(mark(X), from(s(X)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
a__app(nil, YS) → mark(YS)
mark(nil) → nil
a__from(X) → from(X)
a__zWadr(nil, YS) → nil
mark(from(X)) → a__from(mark(X))
mark(prefix(X)) → a__prefix(mark(X))
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__app(X1, X2) → app(X1, X2)
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
a__zWadr(XS, nil) → nil



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ QDPOrderProof
QDP
                      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(prefix(X)) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)

The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
The remaining pairs can at least be oriented weakly.

MARK(prefix(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
prefix(x1)  =  x1
from(x1)  =  from(x1)
A__FROM(x1)  =  x1
mark(x1)  =  x1
cons(x1, x2)  =  x1
a__prefix(x1)  =  x1
s(x1)  =  x1
nil  =  nil
zWadr(x1, x2)  =  zWadr(x1, x2)
a__zWadr(x1, x2)  =  a__zWadr(x1, x2)
a__app(x1, x2)  =  a__app(x1, x2)
app(x1, x2)  =  app(x1, x2)
a__from(x1)  =  a__from(x1)

Lexicographic path order with status [19].
Quasi-Precedence:
[zWadr2, azWadr2] > [aapp2, app2] > [from1, nil, afrom1]

Status:
aapp2: [1,2]
from1: [1]
azWadr2: [1,2]
app2: [1,2]
afrom1: [1]
zWadr2: [1,2]
nil: multiset


The following usable rules [14] were oriented:

a__prefix(X) → prefix(X)
mark(s(X)) → s(mark(X))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
a__zWadr(X1, X2) → zWadr(X1, X2)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__from(X) → cons(mark(X), from(s(X)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
a__app(nil, YS) → mark(YS)
mark(nil) → nil
a__from(X) → from(X)
a__zWadr(nil, YS) → nil
mark(from(X)) → a__from(mark(X))
mark(prefix(X)) → a__prefix(mark(X))
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__app(X1, X2) → app(X1, X2)
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
a__zWadr(XS, nil) → nil



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ QDPOrderProof
                    ↳ QDP
                      ↳ QDPOrderProof
QDP
                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(prefix(X)) → MARK(X)
A__FROM(X) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ QDPOrderProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ DependencyGraphProof
QDP
                              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(prefix(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MARK(prefix(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
prefix(x1)  =  prefix(x1)
cons(x1, x2)  =  cons(x1, x2)

Lexicographic path order with status [19].
Quasi-Precedence:
cons2 > [MARK1, prefix1]

Status:
MARK1: [1]
prefix1: [1]
cons2: [2,1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ QDPOrderProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
QDP
                                  ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__app(nil, YS) → mark(YS)
a__app(cons(X, XS), YS) → cons(mark(X), app(XS, YS))
a__from(X) → cons(mark(X), from(s(X)))
a__zWadr(nil, YS) → nil
a__zWadr(XS, nil) → nil
a__zWadr(cons(X, XS), cons(Y, YS)) → cons(a__app(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
a__prefix(L) → cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) → a__app(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(zWadr(X1, X2)) → a__zWadr(mark(X1), mark(X2))
mark(prefix(X)) → a__prefix(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__app(X1, X2) → app(X1, X2)
a__from(X) → from(X)
a__zWadr(X1, X2) → zWadr(X1, X2)
a__prefix(X) → prefix(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.